Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2018): 20232245, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471555

RESUMEN

Anthropogenic activities have reshaped biodiversity on islands worldwide. However, it remains unclear how island attributes and land-use change interactively shape multiple facets of island biodiversity through community assembly processes. To answer this, we conducted bird surveys in various land-use types (mainly forest and farmland) using transects on 34 oceanic land-bridge islands in the largest archipelago of China. We found that bird species richness increased with island area and decreased with isolation, regardless of the intensity of land-use change. However, forest-dominated habitats exhibited lower richness than farmland-dominated habitats. Island bird assemblages generally comprised species that share more similar traits or evolutionary histories (i.e. functional and/or phylogenetic clustering) than expected if assemblages were randomly assembled. Contrary to our expectations, we observed that bird assemblages in forest-dominated habitats were more clustered on large and close islands, whereas assemblages in farmland-dominated habitats were more clustered on small islands. These contrasting results indicate that land-use change interacts with island biogeography to alter the community assembly of birds on inhabited islands. Our findings emphasize the importance of incorporating human-modified habitats when examining the community assembly of island biota, and further suggest that agricultural landscapes on large islands may play essential roles in protecting countryside island biodiversity.


Asunto(s)
Biodiversidad , Aves , Animales , Humanos , Filogenia , Islas , Ecosistema
2.
Artículo en Inglés | MEDLINE | ID: mdl-36901663

RESUMEN

Single-leg landing is one of the maneuvers that has been linked to non-contact anterior cruciate ligament (ACL) injuries, and wearing knee braces has been shown to reduce ACL injury incidence. The purpose of this study was to determine whether wearing a knee brace has an effect on muscle force during single-leg landings at two heights through musculoskeletal simulation. Eleven healthy male participants, some braced and some non-braced were recruited to perform single-leg landings at 30 cm and 45 cm. We recorded the trajectories and ground reaction forces (GRF) using an eight-camera motion capture system and a force platform. The captured data were imported into the generic musculoskeletal model (Gait2392) in OpenSim. Static optimization was used to calculate the muscle forces. The gluteus minimus, rectus femoris, vastus medialis, vastus lateralis, vastus medialis medial gastrocnemius, lateral gartrocnemius, and soleus muscle forces were all statistically significant different between the braced and non-braced participants. Simultaneously, increasing the landing height significantly affected the gluteus maximums, vastus medialis, and vastus intermedia muscle forces. Our findings imply that wearing a knee brace may alter muscle forces during single-leg landings, preventing ACL injuries. Additionally, research demonstrates that people should avoid landing from heights due to the increased risk of knee injuries.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla , Masculino , Humanos , Pierna/fisiología , Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Lesiones del Ligamento Cruzado Anterior/prevención & control , Traumatismos de la Rodilla/prevención & control , Articulación de la Rodilla/fisiología
3.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839119

RESUMEN

Constructing a heterogeneous interface using different components is one of the effective measures to achieve the bifunctionality of nanocatalysts, while synergistic interactions between multiple interfaces can further optimize the performance of single-interface nanocatalysts. The non-precious metal nanocatalysts MoS2/NiSe2/reduced graphene oxide (rGO) bilayer sandwich-like nanostructure with multiple well-defined interfaces is prepared by a simple hydrothermal method. MoS2 and rGO are layered nanostructures with clear boundaries, and the NiSe2 nanoparticles with uniform size are sandwiched between both layered nanostructures. This multiple-interfaced sandwich-like nanostructure is prominent in catalytic water splitting with low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and almost no degradation in performance after a 20 h long-term reaction. In order to simulate the actual overall water splitting process, the prepared nanostructures are assembled into MoS2/NiSe2/rGO||MoS2/NiSe2/rGO modified two-electrode system, whose overpotential is only 1.52 mV, even exceeded that of noble metal nanocatalyst (Pt/C||RuO2~1.63 mV). This work provides a feasible idea for constructing multi-interface bifunctional electrocatalysts using nanoparticle-doped bilayer-like nanostructures.

4.
Med Eng Phys ; 110: 103914, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36564139

RESUMEN

Sidestep cutting is a critical movement in sports. However, biomechanical research on sidestep cutting has not hitherto reached a consensus. In order to investigate the effects of limb dominance and movement direction on ankle and subtalar joints during sidestep cutting, twelve physically active male participants were recruited in the present study. Trajectory and ground reaction force data were collected by the motion capture system and force platform. Kinematics, kinetics, and muscle forces information were obtained by running OpenSim. Two-way repeated measures ANOVA was performed with movement direction and limb dominance as independent variables. We found that movement direction had a significant effect on ankle dorsiflexion angle. In contrast, the factor of limb dominance had no effect on ankle and subtalar joints angles. For ankle joint moment, the plantarflexion moment was greater by performing a 45° sidestep cutting or using the dominant limb, while the subtalar joint moment was not affected by these two variables. In terms of muscle forces, the soleus of the dominant limb generated greater plantarflexion muscle force on the sagittal plane, while the non-dominant limb tended to contract more strongly (peroneus longus and peroneus brevis) on the frontal plane to stabilize the subtalar joint. Meanwhile, a smaller sidestep cutting angle made participants generate greater plantarflexion muscle forces (soleus and gastrocnemius). In conclusion, our findings indicated that participants should take limb dominance and movement direction into consideration for enhancing athletic performance and reducing the risk of injury during sidestep cutting.


Asunto(s)
Articulación del Tobillo , Tobillo , Masculino , Humanos , Articulación del Tobillo/fisiología , Extremidad Inferior/fisiología , Movimiento/fisiología , Pierna , Fenómenos Biomecánicos
5.
Entropy (Basel) ; 24(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37420484

RESUMEN

Classical link prediction methods mainly utilize vertex information and topological structure to predict missing links in networks. However, accessing vertex information in real-world networks, such as social networks, is still challenging. Moreover, link prediction methods based on topological structure are usually heuristic, and mainly consider common neighbors, vertex degrees and paths, which cannot fully represent the topology context. In recent years, network embedding models have shown efficiency for link prediction, but they lack interpretability. To address these issues, this paper proposes a novel link prediction method based on an optimized vertex collocation profile (OVCP). First, the 7-subgraph topology was proposed to represent the topology context of vertexes. Second, any 7-subgraph can be converted into a unique address by OVCP, and then we obtained the interpretable feature vectors of vertexes. Third, the classification model with OVCP features was used to predict links, and the overlapping community detection algorithm was employed to divide a network into multiple small communities, which can greatly reduce the complexity of our method. Experimental results demonstrate that the proposed method can achieve a promising performance compared with traditional link prediction methods, and has better interpretability than network-embedding-based methods.

6.
Nanoscale ; 6(19): 11380-6, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25144767

RESUMEN

Cuprous oxide/hematite nanotubes (Cu2O/Fe2O3NTs) were prepared by a potentiostatic electrodeposited method, in which different structured Cu2O materials were modified onto Fe2O3 NTs surface. Among them, the material with double-layer Cu2O spheres (Cu2O/Fe2O3 NTs-30) showed excellent photoelectrocatalytic (PEC) properties with a suitable energy band gap (1.96 eV) and a smaller overpotential (0.18 V). Furthermore, Cu2O/Fe2O3 NTs-30 showed two types of synergisms in the PEC reduction of CO2: (i) between electrocatalysis and photocatalysis and (ii) between Cu2O and Fe2O3NTs. The faradaic efficiency and methanol yield reached 93% and 4.94 mmol L(-1) cm(-2) after 6 h, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...